/** * Author......: Jens Steube * License.....: MIT */ #define _SCRYPT_ #include "include/constants.h" #include "include/kernel_vendor.h" #ifdef VLIW1 #define VECT_SIZE1 #endif #ifdef VLIW4 #define VECT_SIZE1 #endif #ifdef VLIW5 #define VECT_SIZE1 #endif #define DGST_R0 0 #define DGST_R1 1 #define DGST_R2 2 #define DGST_R3 3 #include "include/kernel_functions.c" #include "types_amd.c" #include "common_amd.c" #ifdef VECT_SIZE1 #define VECT_COMPARE_M "check_multi_vect1_comp4.c" #endif #ifdef VECT_SIZE2 #define VECT_COMPARE_M "check_multi_vect2_comp4.c" #endif #ifdef VECT_SIZE4 #define VECT_COMPARE_M "check_multi_vect4_comp4.c" #endif __constant u32 k_sha256[64] = { SHA256C00, SHA256C01, SHA256C02, SHA256C03, SHA256C04, SHA256C05, SHA256C06, SHA256C07, SHA256C08, SHA256C09, SHA256C0a, SHA256C0b, SHA256C0c, SHA256C0d, SHA256C0e, SHA256C0f, SHA256C10, SHA256C11, SHA256C12, SHA256C13, SHA256C14, SHA256C15, SHA256C16, SHA256C17, SHA256C18, SHA256C19, SHA256C1a, SHA256C1b, SHA256C1c, SHA256C1d, SHA256C1e, SHA256C1f, SHA256C20, SHA256C21, SHA256C22, SHA256C23, SHA256C24, SHA256C25, SHA256C26, SHA256C27, SHA256C28, SHA256C29, SHA256C2a, SHA256C2b, SHA256C2c, SHA256C2d, SHA256C2e, SHA256C2f, SHA256C30, SHA256C31, SHA256C32, SHA256C33, SHA256C34, SHA256C35, SHA256C36, SHA256C37, SHA256C38, SHA256C39, SHA256C3a, SHA256C3b, SHA256C3c, SHA256C3d, SHA256C3e, SHA256C3f, }; static void sha256_transform (const u32x w0[4], const u32x w1[4], const u32x w2[4], const u32x w3[4], u32x digest[8]) { u32x a = digest[0]; u32x b = digest[1]; u32x c = digest[2]; u32x d = digest[3]; u32x e = digest[4]; u32x f = digest[5]; u32x g = digest[6]; u32x h = digest[7]; u32x w0_t = w0[0]; u32x w1_t = w0[1]; u32x w2_t = w0[2]; u32x w3_t = w0[3]; u32x w4_t = w1[0]; u32x w5_t = w1[1]; u32x w6_t = w1[2]; u32x w7_t = w1[3]; u32x w8_t = w2[0]; u32x w9_t = w2[1]; u32x wa_t = w2[2]; u32x wb_t = w2[3]; u32x wc_t = w3[0]; u32x wd_t = w3[1]; u32x we_t = w3[2]; u32x wf_t = w3[3]; #define ROUND_EXPAND() \ { \ w0_t = SHA256_EXPAND (we_t, w9_t, w1_t, w0_t); \ w1_t = SHA256_EXPAND (wf_t, wa_t, w2_t, w1_t); \ w2_t = SHA256_EXPAND (w0_t, wb_t, w3_t, w2_t); \ w3_t = SHA256_EXPAND (w1_t, wc_t, w4_t, w3_t); \ w4_t = SHA256_EXPAND (w2_t, wd_t, w5_t, w4_t); \ w5_t = SHA256_EXPAND (w3_t, we_t, w6_t, w5_t); \ w6_t = SHA256_EXPAND (w4_t, wf_t, w7_t, w6_t); \ w7_t = SHA256_EXPAND (w5_t, w0_t, w8_t, w7_t); \ w8_t = SHA256_EXPAND (w6_t, w1_t, w9_t, w8_t); \ w9_t = SHA256_EXPAND (w7_t, w2_t, wa_t, w9_t); \ wa_t = SHA256_EXPAND (w8_t, w3_t, wb_t, wa_t); \ wb_t = SHA256_EXPAND (w9_t, w4_t, wc_t, wb_t); \ wc_t = SHA256_EXPAND (wa_t, w5_t, wd_t, wc_t); \ wd_t = SHA256_EXPAND (wb_t, w6_t, we_t, wd_t); \ we_t = SHA256_EXPAND (wc_t, w7_t, wf_t, we_t); \ wf_t = SHA256_EXPAND (wd_t, w8_t, w0_t, wf_t); \ } #define ROUND_STEP(i) \ { \ SHA256_STEP (SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w0_t, k_sha256[i + 0]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w1_t, k_sha256[i + 1]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, w2_t, k_sha256[i + 2]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, w3_t, k_sha256[i + 3]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, w4_t, k_sha256[i + 4]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, w5_t, k_sha256[i + 5]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, w6_t, k_sha256[i + 6]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, w7_t, k_sha256[i + 7]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w8_t, k_sha256[i + 8]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w9_t, k_sha256[i + 9]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, wa_t, k_sha256[i + 10]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, wb_t, k_sha256[i + 11]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, wc_t, k_sha256[i + 12]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, wd_t, k_sha256[i + 13]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, we_t, k_sha256[i + 14]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, wf_t, k_sha256[i + 15]); \ } ROUND_STEP (0); #pragma unroll for (int i = 16; i < 64; i += 16) { ROUND_EXPAND (); ROUND_STEP (i); } digest[0] += a; digest[1] += b; digest[2] += c; digest[3] += d; digest[4] += e; digest[5] += f; digest[6] += g; digest[7] += h; } static void hmac_sha256_pad (u32x w0[4], u32x w1[4], u32x w2[4], u32x w3[4], u32x ipad[8], u32x opad[8]) { w0[0] = w0[0] ^ 0x36363636; w0[1] = w0[1] ^ 0x36363636; w0[2] = w0[2] ^ 0x36363636; w0[3] = w0[3] ^ 0x36363636; w1[0] = w1[0] ^ 0x36363636; w1[1] = w1[1] ^ 0x36363636; w1[2] = w1[2] ^ 0x36363636; w1[3] = w1[3] ^ 0x36363636; w2[0] = w2[0] ^ 0x36363636; w2[1] = w2[1] ^ 0x36363636; w2[2] = w2[2] ^ 0x36363636; w2[3] = w2[3] ^ 0x36363636; w3[0] = w3[0] ^ 0x36363636; w3[1] = w3[1] ^ 0x36363636; w3[2] = w3[2] ^ 0x36363636; w3[3] = w3[3] ^ 0x36363636; ipad[0] = SHA256M_A; ipad[1] = SHA256M_B; ipad[2] = SHA256M_C; ipad[3] = SHA256M_D; ipad[4] = SHA256M_E; ipad[5] = SHA256M_F; ipad[6] = SHA256M_G; ipad[7] = SHA256M_H; sha256_transform (w0, w1, w2, w3, ipad); w0[0] = w0[0] ^ 0x6a6a6a6a; w0[1] = w0[1] ^ 0x6a6a6a6a; w0[2] = w0[2] ^ 0x6a6a6a6a; w0[3] = w0[3] ^ 0x6a6a6a6a; w1[0] = w1[0] ^ 0x6a6a6a6a; w1[1] = w1[1] ^ 0x6a6a6a6a; w1[2] = w1[2] ^ 0x6a6a6a6a; w1[3] = w1[3] ^ 0x6a6a6a6a; w2[0] = w2[0] ^ 0x6a6a6a6a; w2[1] = w2[1] ^ 0x6a6a6a6a; w2[2] = w2[2] ^ 0x6a6a6a6a; w2[3] = w2[3] ^ 0x6a6a6a6a; w3[0] = w3[0] ^ 0x6a6a6a6a; w3[1] = w3[1] ^ 0x6a6a6a6a; w3[2] = w3[2] ^ 0x6a6a6a6a; w3[3] = w3[3] ^ 0x6a6a6a6a; opad[0] = SHA256M_A; opad[1] = SHA256M_B; opad[2] = SHA256M_C; opad[3] = SHA256M_D; opad[4] = SHA256M_E; opad[5] = SHA256M_F; opad[6] = SHA256M_G; opad[7] = SHA256M_H; sha256_transform (w0, w1, w2, w3, opad); } static void hmac_sha256_run (u32x w0[4], u32x w1[4], u32x w2[4], u32x w3[4], u32x ipad[8], u32x opad[8], u32x digest[8]) { digest[0] = ipad[0]; digest[1] = ipad[1]; digest[2] = ipad[2]; digest[3] = ipad[3]; digest[4] = ipad[4]; digest[5] = ipad[5]; digest[6] = ipad[6]; digest[7] = ipad[7]; sha256_transform (w0, w1, w2, w3, digest); w0[0] = digest[0]; w0[1] = digest[1]; w0[2] = digest[2]; w0[3] = digest[3]; w1[0] = digest[4]; w1[1] = digest[5]; w1[2] = digest[6]; w1[3] = digest[7]; w2[0] = 0x80000000; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (64 + 32) * 8; digest[0] = opad[0]; digest[1] = opad[1]; digest[2] = opad[2]; digest[3] = opad[3]; digest[4] = opad[4]; digest[5] = opad[5]; digest[6] = opad[6]; digest[7] = opad[7]; sha256_transform (w0, w1, w2, w3, digest); } static void memcat8 (u32x block0[4], u32x block1[4], u32x block2[4], u32x block3[4], const u32 block_len, const u32 append[2]) { switch (block_len) { case 0: block0[0] = append[0]; block0[1] = append[1]; break; case 1: block0[0] = block0[0] | append[0] << 8; block0[1] = append[0] >> 24 | append[1] << 8; block0[2] = append[1] >> 24; break; case 2: block0[0] = block0[0] | append[0] << 16; block0[1] = append[0] >> 16 | append[1] << 16; block0[2] = append[1] >> 16; break; case 3: block0[0] = block0[0] | append[0] << 24; block0[1] = append[0] >> 8 | append[1] << 24; block0[2] = append[1] >> 8; break; case 4: block0[1] = append[0]; block0[2] = append[1]; break; case 5: block0[1] = block0[1] | append[0] << 8; block0[2] = append[0] >> 24 | append[1] << 8; block0[3] = append[1] >> 24; break; case 6: block0[1] = block0[1] | append[0] << 16; block0[2] = append[0] >> 16 | append[1] << 16; block0[3] = append[1] >> 16; break; case 7: block0[1] = block0[1] | append[0] << 24; block0[2] = append[0] >> 8 | append[1] << 24; block0[3] = append[1] >> 8; break; case 8: block0[2] = append[0]; block0[3] = append[1]; break; case 9: block0[2] = block0[2] | append[0] << 8; block0[3] = append[0] >> 24 | append[1] << 8; block1[0] = append[1] >> 24; break; case 10: block0[2] = block0[2] | append[0] << 16; block0[3] = append[0] >> 16 | append[1] << 16; block1[0] = append[1] >> 16; break; case 11: block0[2] = block0[2] | append[0] << 24; block0[3] = append[0] >> 8 | append[1] << 24; block1[0] = append[1] >> 8; break; case 12: block0[3] = append[0]; block1[0] = append[1]; break; case 13: block0[3] = block0[3] | append[0] << 8; block1[0] = append[0] >> 24 | append[1] << 8; block1[1] = append[1] >> 24; break; case 14: block0[3] = block0[3] | append[0] << 16; block1[0] = append[0] >> 16 | append[1] << 16; block1[1] = append[1] >> 16; break; case 15: block0[3] = block0[3] | append[0] << 24; block1[0] = append[0] >> 8 | append[1] << 24; block1[1] = append[1] >> 8; break; case 16: block1[0] = append[0]; block1[1] = append[1]; break; case 17: block1[0] = block1[0] | append[0] << 8; block1[1] = append[0] >> 24 | append[1] << 8; block1[2] = append[1] >> 24; break; case 18: block1[0] = block1[0] | append[0] << 16; block1[1] = append[0] >> 16 | append[1] << 16; block1[2] = append[1] >> 16; break; case 19: block1[0] = block1[0] | append[0] << 24; block1[1] = append[0] >> 8 | append[1] << 24; block1[2] = append[1] >> 8; break; case 20: block1[1] = append[0]; block1[2] = append[1]; break; case 21: block1[1] = block1[1] | append[0] << 8; block1[2] = append[0] >> 24 | append[1] << 8; block1[3] = append[1] >> 24; break; case 22: block1[1] = block1[1] | append[0] << 16; block1[2] = append[0] >> 16 | append[1] << 16; block1[3] = append[1] >> 16; break; case 23: block1[1] = block1[1] | append[0] << 24; block1[2] = append[0] >> 8 | append[1] << 24; block1[3] = append[1] >> 8; break; case 24: block1[2] = append[0]; block1[3] = append[1]; break; case 25: block1[2] = block1[2] | append[0] << 8; block1[3] = append[0] >> 24 | append[1] << 8; block2[0] = append[1] >> 24; break; case 26: block1[2] = block1[2] | append[0] << 16; block1[3] = append[0] >> 16 | append[1] << 16; block2[0] = append[1] >> 16; break; case 27: block1[2] = block1[2] | append[0] << 24; block1[3] = append[0] >> 8 | append[1] << 24; block2[0] = append[1] >> 8; break; case 28: block1[3] = append[0]; block2[0] = append[1]; break; case 29: block1[3] = block1[3] | append[0] << 8; block2[0] = append[0] >> 24 | append[1] << 8; block2[1] = append[1] >> 24; break; case 30: block1[3] = block1[3] | append[0] << 16; block2[0] = append[0] >> 16 | append[1] << 16; block2[1] = append[1] >> 16; break; case 31: block1[3] = block1[3] | append[0] << 24; block2[0] = append[0] >> 8 | append[1] << 24; block2[1] = append[1] >> 8; break; case 32: block2[0] = append[0]; block2[1] = append[1]; break; case 33: block2[0] = block2[0] | append[0] << 8; block2[1] = append[0] >> 24 | append[1] << 8; block2[2] = append[1] >> 24; break; case 34: block2[0] = block2[0] | append[0] << 16; block2[1] = append[0] >> 16 | append[1] << 16; block2[2] = append[1] >> 16; break; case 35: block2[0] = block2[0] | append[0] << 24; block2[1] = append[0] >> 8 | append[1] << 24; block2[2] = append[1] >> 8; break; case 36: block2[1] = append[0]; block2[2] = append[1]; break; case 37: block2[1] = block2[1] | append[0] << 8; block2[2] = append[0] >> 24 | append[1] << 8; block2[3] = append[1] >> 24; break; case 38: block2[1] = block2[1] | append[0] << 16; block2[2] = append[0] >> 16 | append[1] << 16; block2[3] = append[1] >> 16; break; case 39: block2[1] = block2[1] | append[0] << 24; block2[2] = append[0] >> 8 | append[1] << 24; block2[3] = append[1] >> 8; break; case 40: block2[2] = append[0]; block2[3] = append[1]; break; case 41: block2[2] = block2[2] | append[0] << 8; block2[3] = append[0] >> 24 | append[1] << 8; block3[0] = append[1] >> 24; break; case 42: block2[2] = block2[2] | append[0] << 16; block2[3] = append[0] >> 16 | append[1] << 16; block3[0] = append[1] >> 16; break; case 43: block2[2] = block2[2] | append[0] << 24; block2[3] = append[0] >> 8 | append[1] << 24; block3[0] = append[1] >> 8; break; case 44: block2[3] = append[0]; block3[0] = append[1]; break; case 45: block2[3] = block2[3] | append[0] << 8; block3[0] = append[0] >> 24 | append[1] << 8; block3[1] = append[1] >> 24; break; case 46: block2[3] = block2[3] | append[0] << 16; block3[0] = append[0] >> 16 | append[1] << 16; block3[1] = append[1] >> 16; break; case 47: block2[3] = block2[3] | append[0] << 24; block3[0] = append[0] >> 8 | append[1] << 24; block3[1] = append[1] >> 8; break; case 48: block3[0] = append[0]; block3[1] = append[1]; break; case 49: block3[0] = block3[0] | append[0] << 8; block3[1] = append[0] >> 24 | append[1] << 8; block3[2] = append[1] >> 24; break; case 50: block3[0] = block3[0] | append[0] << 16; block3[1] = append[0] >> 16 | append[1] << 16; block3[2] = append[1] >> 16; break; case 51: block3[0] = block3[0] | append[0] << 24; block3[1] = append[0] >> 8 | append[1] << 24; block3[2] = append[1] >> 8; break; case 52: block3[1] = append[0]; block3[2] = append[1]; break; case 53: block3[1] = block3[1] | append[0] << 8; block3[2] = append[0] >> 24 | append[1] << 8; block3[3] = append[1] >> 24; break; case 54: block3[1] = block3[1] | append[0] << 16; block3[2] = append[0] >> 16 | append[1] << 16; block3[3] = append[1] >> 16; break; case 55: block3[1] = block3[1] | append[0] << 24; block3[2] = append[0] >> 8 | append[1] << 24; block3[3] = append[1] >> 8; break; case 56: block3[2] = append[0]; block3[3] = append[1]; break; } } static uint4 swap_workaround (uint4 v) { return (rotate ((v & 0x00FF00FF), 24u) | rotate ((v & 0xFF00FF00), 8u)); } #define GET_SCRYPT_CNT(r,p) (2 * (r) * 16 * (p)) #define GET_SMIX_CNT(r,N) (2 * (r) * 16 * (N)) #define GET_STATE_CNT(r) (2 * (r) * 16) #define ADD_ROTATE_XOR(r,i1,i2,s) (r) ^= rotate ((i1) + (i2), (s)); #define SALSA20_2R() \ { \ ADD_ROTATE_XOR (X1, X0, X3, 7); \ ADD_ROTATE_XOR (X2, X1, X0, 9); \ ADD_ROTATE_XOR (X3, X2, X1, 13); \ ADD_ROTATE_XOR (X0, X3, X2, 18); \ \ X1 = X1.s3012; \ X2 = X2.s2301; \ X3 = X3.s1230; \ \ ADD_ROTATE_XOR (X3, X0, X1, 7); \ ADD_ROTATE_XOR (X2, X3, X0, 9); \ ADD_ROTATE_XOR (X1, X2, X3, 13); \ ADD_ROTATE_XOR (X0, X1, X2, 18); \ \ X1 = X1.s1230; \ X2 = X2.s2301; \ X3 = X3.s3012; \ } #define SALSA20_8_XOR() \ { \ R0 = R0 ^ Y0; \ R1 = R1 ^ Y1; \ R2 = R2 ^ Y2; \ R3 = R3 ^ Y3; \ \ uint4 X0 = R0; \ uint4 X1 = R1; \ uint4 X2 = R2; \ uint4 X3 = R3; \ \ SALSA20_2R (); \ SALSA20_2R (); \ SALSA20_2R (); \ SALSA20_2R (); \ \ R0 = R0 + X0; \ R1 = R1 + X1; \ R2 = R2 + X2; \ R3 = R3 + X3; \ } static void salsa_r (uint4 *T, const u32 r) { const u32 state_cnt = GET_STATE_CNT (r); const u32 state_cnt4 = state_cnt / 4; uint4 R0 = T[state_cnt4 - 4]; uint4 R1 = T[state_cnt4 - 3]; uint4 R2 = T[state_cnt4 - 2]; uint4 R3 = T[state_cnt4 - 1]; for (u32 i = 0; i < state_cnt4; i += 8) { uint4 Y0; uint4 Y1; uint4 Y2; uint4 Y3; Y0 = T[i + 0]; Y1 = T[i + 1]; Y2 = T[i + 2]; Y3 = T[i + 3]; SALSA20_8_XOR (); T[i + 0] = R0; T[i + 1] = R1; T[i + 2] = R2; T[i + 3] = R3; Y0 = T[i + 4]; Y1 = T[i + 5]; Y2 = T[i + 6]; Y3 = T[i + 7]; SALSA20_8_XOR (); T[i + 4] = R0; T[i + 5] = R1; T[i + 6] = R2; T[i + 7] = R3; } #define exchg(x,y) { const uint4 t = T[(x)]; T[(x)] = T[(y)]; T[(y)] = t; } #define exchg4(x,y) \ { \ const u32 x4 = (x) * 4; \ const u32 y4 = (y) * 4; \ \ exchg (x4 + 0, y4 + 0); \ exchg (x4 + 1, y4 + 1); \ exchg (x4 + 2, y4 + 2); \ exchg (x4 + 3, y4 + 3); \ } for (u32 i = 1; i < r / 1; i++) { const u32 x = i * 1; const u32 y = i * 2; exchg4 (x, y); } for (u32 i = 1; i < r / 2; i++) { const u32 x = i * 1; const u32 y = i * 2; const u32 xr1 = (r * 2) - 1 - x; const u32 yr1 = (r * 2) - 1 - y; exchg4 (xr1, yr1); } } static void scrypt_smix (uint4 *X, uint4 *T, const u32 N, const u32 r, const u32 tmto, const u32 phy, __global uint4 *V) { const u32 state_cnt = GET_STATE_CNT (r); const u32 state_cnt4 = state_cnt / 4; #define Coord(x,y,z) (((x) * zSIZE) + ((y) * zSIZE * xSIZE) + (z)) #define CO Coord(x,y,z) const u32 xSIZE = phy; const u32 ySIZE = N / tmto; const u32 zSIZE = state_cnt4; const u32 gid = get_global_id (0); const u32 x = gid % xSIZE; #pragma unroll for (u32 i = 0; i < state_cnt4; i += 4) { T[0] = (uint4) (X[i + 0].x, X[i + 1].y, X[i + 2].z, X[i + 3].w); T[1] = (uint4) (X[i + 1].x, X[i + 2].y, X[i + 3].z, X[i + 0].w); T[2] = (uint4) (X[i + 2].x, X[i + 3].y, X[i + 0].z, X[i + 1].w); T[3] = (uint4) (X[i + 3].x, X[i + 0].y, X[i + 1].z, X[i + 2].w); X[i + 0] = T[0]; X[i + 1] = T[1]; X[i + 2] = T[2]; X[i + 3] = T[3]; } for (u32 y = 0; y < ySIZE; y++) { for (u32 z = 0; z < zSIZE; z++) V[CO] = X[z]; for (u32 i = 0; i < tmto; i++) salsa_r (X, r); } for (u32 i = 0; i < N; i++) { const u32 k = X[zSIZE - 4].x & (N - 1); const u32 y = k / tmto; const u32 km = k - (y * tmto); for (u32 z = 0; z < zSIZE; z++) T[z] = V[CO]; for (u32 i = 0; i < km; i++) salsa_r (T, r); for (u32 z = 0; z < zSIZE; z++) X[z] ^= T[z]; salsa_r (X, r); } #pragma unroll for (u32 i = 0; i < state_cnt4; i += 4) { T[0] = (uint4) (X[i + 0].x, X[i + 3].y, X[i + 2].z, X[i + 1].w); T[1] = (uint4) (X[i + 1].x, X[i + 0].y, X[i + 3].z, X[i + 2].w); T[2] = (uint4) (X[i + 2].x, X[i + 1].y, X[i + 0].z, X[i + 3].w); T[3] = (uint4) (X[i + 3].x, X[i + 2].y, X[i + 1].z, X[i + 0].w); X[i + 0] = T[0]; X[i + 1] = T[1]; X[i + 2] = T[2]; X[i + 3] = T[3]; } } __kernel void __attribute__((reqd_work_group_size (64, 1, 1))) m08900_init (__global pw_t *pws, __global gpu_rule_t *rules_buf, __global comb_t *combs_buf, __global bf_t *bfs_buf, __global scrypt_tmp_t *tmps, __global void *hooks, __global u32 *bitmaps_buf_s1_a, __global u32 *bitmaps_buf_s1_b, __global u32 *bitmaps_buf_s1_c, __global u32 *bitmaps_buf_s1_d, __global u32 *bitmaps_buf_s2_a, __global u32 *bitmaps_buf_s2_b, __global u32 *bitmaps_buf_s2_c, __global u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global digest_t *digests_buf, __global u32 *hashes_shown, __global salt_t *salt_bufs, __global void *esalt_bufs, __global u32 *d_return_buf, __global uint4 *d_scryptV_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 rules_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max) { /** * base */ const u32 gid = get_global_id (0); if (gid >= gid_max) return; u32x w0[4]; w0[0] = pws[gid].i[ 0]; w0[1] = pws[gid].i[ 1]; w0[2] = pws[gid].i[ 2]; w0[3] = pws[gid].i[ 3]; u32x w1[4]; w1[0] = pws[gid].i[ 4]; w1[1] = pws[gid].i[ 5]; w1[2] = pws[gid].i[ 6]; w1[3] = pws[gid].i[ 7]; u32x w2[4]; w2[0] = pws[gid].i[ 8]; w2[1] = pws[gid].i[ 9]; w2[2] = pws[gid].i[10]; w2[3] = pws[gid].i[11]; u32x w3[4]; w3[0] = pws[gid].i[12]; w3[1] = pws[gid].i[13]; w3[2] = pws[gid].i[14]; w3[3] = pws[gid].i[15]; /** * salt */ u32 salt_buf0[4]; salt_buf0[0] = salt_bufs[salt_pos].salt_buf[0]; salt_buf0[1] = salt_bufs[salt_pos].salt_buf[1]; salt_buf0[2] = salt_bufs[salt_pos].salt_buf[2]; salt_buf0[3] = salt_bufs[salt_pos].salt_buf[3]; u32 salt_buf1[4]; salt_buf1[0] = salt_bufs[salt_pos].salt_buf[4]; salt_buf1[1] = salt_bufs[salt_pos].salt_buf[5]; salt_buf1[2] = salt_bufs[salt_pos].salt_buf[6]; salt_buf1[3] = salt_bufs[salt_pos].salt_buf[7]; const u32 salt_len = salt_bufs[salt_pos].salt_len; /** * memory buffers */ const u32 scrypt_r = SCRYPT_R; const u32 scrypt_p = SCRYPT_P; //const u32 scrypt_N = SCRYPT_N; //const u32 state_cnt = GET_STATE_CNT (scrypt_r); const u32 scrypt_cnt = GET_SCRYPT_CNT (scrypt_r, scrypt_p); //const u32 smix_cnt = GET_SMIX_CNT (scrypt_r, scrypt_N); /** * 1st pbkdf2, creates B */ w0[0] = swap_workaround (w0[0]); w0[1] = swap_workaround (w0[1]); w0[2] = swap_workaround (w0[2]); w0[3] = swap_workaround (w0[3]); w1[0] = swap_workaround (w1[0]); w1[1] = swap_workaround (w1[1]); w1[2] = swap_workaround (w1[2]); w1[3] = swap_workaround (w1[3]); w2[0] = swap_workaround (w2[0]); w2[1] = swap_workaround (w2[1]); w2[2] = swap_workaround (w2[2]); w2[3] = swap_workaround (w2[3]); w3[0] = swap_workaround (w3[0]); w3[1] = swap_workaround (w3[1]); w3[2] = swap_workaround (w3[2]); w3[3] = swap_workaround (w3[3]); u32 ipad[8]; u32 opad[8]; hmac_sha256_pad (w0, w1, w2, w3, ipad, opad); for (u32 i = 0, j = 0, k = 0; i < scrypt_cnt; i += 8, j += 1, k += 2) { w0[0] = salt_buf0[0]; w0[1] = salt_buf0[1]; w0[2] = salt_buf0[2]; w0[3] = salt_buf0[3]; w1[0] = salt_buf1[0]; w1[1] = salt_buf1[1]; w1[2] = salt_buf1[2]; w1[3] = salt_buf1[3]; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; u32 append[2]; append[0] = swap_workaround (j + 1); append[1] = 0x80; memcat8 (w0, w1, w2, w3, salt_len, append); w0[0] = swap_workaround (w0[0]); w0[1] = swap_workaround (w0[1]); w0[2] = swap_workaround (w0[2]); w0[3] = swap_workaround (w0[3]); w1[0] = swap_workaround (w1[0]); w1[1] = swap_workaround (w1[1]); w1[2] = swap_workaround (w1[2]); w1[3] = swap_workaround (w1[3]); w2[0] = swap_workaround (w2[0]); w2[1] = swap_workaround (w2[1]); w2[2] = swap_workaround (w2[2]); w2[3] = swap_workaround (w2[3]); w3[0] = swap_workaround (w3[0]); w3[1] = swap_workaround (w3[1]); w3[2] = 0; w3[3] = (64 + salt_len + 4) * 8; u32x digest[8]; hmac_sha256_run (w0, w1, w2, w3, ipad, opad, digest); const uint4 tmp0 = (uint4) (digest[0], digest[1], digest[2], digest[3]); const uint4 tmp1 = (uint4) (digest[4], digest[5], digest[6], digest[7]); barrier (CLK_GLOBAL_MEM_FENCE); tmps[gid].P[k + 0] = tmp0; tmps[gid].P[k + 1] = tmp1; } } __kernel void __attribute__((reqd_work_group_size (64, 1, 1))) m08900_loop (__global pw_t *pws, __global gpu_rule_t *rules_buf, __global comb_t *combs_buf, __global bf_t *bfs_buf, __global scrypt_tmp_t *tmps, __global void *hooks, __global u32 *bitmaps_buf_s1_a, __global u32 *bitmaps_buf_s1_b, __global u32 *bitmaps_buf_s1_c, __global u32 *bitmaps_buf_s1_d, __global u32 *bitmaps_buf_s2_a, __global u32 *bitmaps_buf_s2_b, __global u32 *bitmaps_buf_s2_c, __global u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global digest_t *digests_buf, __global u32 *hashes_shown, __global salt_t *salt_bufs, __global void *esalt_bufs, __global u32 *d_return_buf, __global uint4 *d_scryptV_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 rules_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max) { const u32 gid = get_global_id (0); if (gid >= gid_max) return; const u32 scrypt_phy = salt_bufs[salt_pos].scrypt_phy; const u32 state_cnt = GET_STATE_CNT (SCRYPT_R); const u32 scrypt_cnt = GET_SCRYPT_CNT (SCRYPT_R, SCRYPT_P); const u32 state_cnt4 = state_cnt / 4; const u32 scrypt_cnt4 = scrypt_cnt / 4; uint4 X[state_cnt4]; uint4 T[state_cnt4]; #pragma unroll for (int z = 0; z < state_cnt4; z++) X[z] = swap_workaround (tmps[gid].P[z]); scrypt_smix (X, T, SCRYPT_N, SCRYPT_R, SCRYPT_TMTO, scrypt_phy, d_scryptV_buf); #pragma unroll for (int z = 0; z < state_cnt4; z++) tmps[gid].P[z] = swap_workaround (X[z]); #if SCRYPT_P >= 1 for (int i = state_cnt4; i < scrypt_cnt4; i += state_cnt4) { for (int z = 0; z < state_cnt4; z++) X[z] = swap_workaround (tmps[gid].P[i + z]); scrypt_smix (X, T, SCRYPT_N, SCRYPT_R, SCRYPT_TMTO, scrypt_phy, d_scryptV_buf); for (int z = 0; z < state_cnt4; z++) tmps[gid].P[i + z] = swap_workaround (X[z]); } #endif } __kernel void __attribute__((reqd_work_group_size (64, 1, 1))) m08900_comp (__global pw_t *pws, __global gpu_rule_t *rules_buf, __global comb_t *combs_buf, __global bf_t *bfs_buf, __global scrypt_tmp_t *tmps, __global void *hooks, __global u32 *bitmaps_buf_s1_a, __global u32 *bitmaps_buf_s1_b, __global u32 *bitmaps_buf_s1_c, __global u32 *bitmaps_buf_s1_d, __global u32 *bitmaps_buf_s2_a, __global u32 *bitmaps_buf_s2_b, __global u32 *bitmaps_buf_s2_c, __global u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global digest_t *digests_buf, __global u32 *hashes_shown, __global salt_t *salt_bufs, __global void *esalt_bufs, __global u32 *d_return_buf, __global uint4 *d_scryptV_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 rules_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max) { /** * base */ const u32 gid = get_global_id (0); const u32 lid = get_local_id (0); if (gid >= gid_max) return; u32x w0[4]; w0[0] = pws[gid].i[ 0]; w0[1] = pws[gid].i[ 1]; w0[2] = pws[gid].i[ 2]; w0[3] = pws[gid].i[ 3]; u32x w1[4]; w1[0] = pws[gid].i[ 4]; w1[1] = pws[gid].i[ 5]; w1[2] = pws[gid].i[ 6]; w1[3] = pws[gid].i[ 7]; u32x w2[4]; w2[0] = pws[gid].i[ 8]; w2[1] = pws[gid].i[ 9]; w2[2] = pws[gid].i[10]; w2[3] = pws[gid].i[11]; u32x w3[4]; w3[0] = pws[gid].i[12]; w3[1] = pws[gid].i[13]; w3[2] = pws[gid].i[14]; w3[3] = pws[gid].i[15]; /** * memory buffers */ const u32 scrypt_r = SCRYPT_R; const u32 scrypt_p = SCRYPT_P; //const u32 scrypt_N = SCRYPT_N; const u32 scrypt_cnt = GET_SCRYPT_CNT (scrypt_r, scrypt_p); const u32 scrypt_cnt4 = scrypt_cnt / 4; /** * 2nd pbkdf2, creates B */ w0[0] = swap_workaround (w0[0]); w0[1] = swap_workaround (w0[1]); w0[2] = swap_workaround (w0[2]); w0[3] = swap_workaround (w0[3]); w1[0] = swap_workaround (w1[0]); w1[1] = swap_workaround (w1[1]); w1[2] = swap_workaround (w1[2]); w1[3] = swap_workaround (w1[3]); w2[0] = swap_workaround (w2[0]); w2[1] = swap_workaround (w2[1]); w2[2] = swap_workaround (w2[2]); w2[3] = swap_workaround (w2[3]); w3[0] = swap_workaround (w3[0]); w3[1] = swap_workaround (w3[1]); w3[2] = swap_workaround (w3[2]); w3[3] = swap_workaround (w3[3]); u32 ipad[8]; u32 opad[8]; hmac_sha256_pad (w0, w1, w2, w3, ipad, opad); for (u32 l = 0; l < scrypt_cnt4; l += 4) { barrier (CLK_GLOBAL_MEM_FENCE); uint4 tmp; tmp = tmps[gid].P[l + 0]; w0[0] = tmp.s0; w0[1] = tmp.s1; w0[2] = tmp.s2; w0[3] = tmp.s3; tmp = tmps[gid].P[l + 1]; w1[0] = tmp.s0; w1[1] = tmp.s1; w1[2] = tmp.s2; w1[3] = tmp.s3; tmp = tmps[gid].P[l + 2]; w2[0] = tmp.s0; w2[1] = tmp.s1; w2[2] = tmp.s2; w2[3] = tmp.s3; tmp = tmps[gid].P[l + 3]; w3[0] = tmp.s0; w3[1] = tmp.s1; w3[2] = tmp.s2; w3[3] = tmp.s3; sha256_transform (w0, w1, w2, w3, ipad); } w0[0] = 0x00000001; w0[1] = 0x80000000; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (64 + (scrypt_cnt * 4) + 4) * 8; u32x digest[8]; hmac_sha256_run (w0, w1, w2, w3, ipad, opad, digest); const u32x r0 = swap_workaround (digest[DGST_R0]); const u32x r1 = swap_workaround (digest[DGST_R1]); const u32x r2 = swap_workaround (digest[DGST_R2]); const u32x r3 = swap_workaround (digest[DGST_R3]); #define il_pos 0 #include VECT_COMPARE_M }